From API to Output: Crafting Laravel & ChatGPT Applications with Ease

lokman musliu
Lokman Musliu

May 1, 2023 · 5 min read · 1,660 views

Laravel and OpenAI Blogpost Image

Integrating OpenAI's ChatGPT with Laravel can be an exciting venture, but it often necessitates the API to return structured data that fits seamlessly within your application's flow. This comprehensive tutorial is here to walk you through the process of crafting Prompt Templates and Output Parsers, ensuring that you receive responses in the precise format you require. Additionally, we'll delve into the response parsing techniques and demonstrate how to rigorously test your implementation with Pest PHP.

Before we start:

A huge thanks to the folks over at Langchain, this tutorial took heavy inspiration from their JS library.

Tutorial Overview:

1. Initial Setup
2. Creating Prompt Templates
3. Creating Output Parsers
4. Parsing the ChatGPT Response
5. Testing with Pest

Integrating OpenAI's ChatGPT with Laravel

1. Initial Setup

Before we begin, you need to install the OpenAI Client and Guzzle HTTP by running the following commands:

composer require openai-php/client guzzle http/guzzle

In your config/services.php, add the OpenAI API key:

<?php

return [

    /*
    |--------------------------------------------------------------------------
    | Third Party Services
    |--------------------------------------------------------------------------
    |
    | This file is for storing the credentials for third party services such
    | as Mailgun, Postmark, AWS and more. This file provides the de facto
    | location for this type of information, allowing packages to have
    | a conventional file to locate the various service credentials.
    |
    */

    'mailgun' => [
        'domain' => env('MAILGUN_DOMAIN'),
        'secret' => env('MAILGUN_SECRET'),
        'endpoint' => env('MAILGUN_ENDPOINT', 'api.mailgun.net'),
        'scheme' => 'https',
    ],

    'postmark' => [
        'token' => env('POSTMARK_TOKEN'),
    ],

    'ses' => [
        'key' => env('AWS_ACCESS_KEY_ID'),
        'secret' => env('AWS_SECRET_ACCESS_KEY'),
        'region' => env('AWS_DEFAULT_REGION', 'us-east-1'),
    ],
    
    // OpenAI Key here:
    'open_ai' => env('OPEN_AI_KEY'),
];

2. Creating Prompt Templates

Prompt Templates can help encapsulate logic for interacting with the OpenAI Client. To create Prompt Template classes, set up the following directory structure: App/Prompts/, and create a PHP class called PromptTemplate.php. Inside this class, include the necessary methods as shown below.

<?php

namespace App\Prompts;

use Illuminate\Support\Str;

class PromptTemplate
{
    public function __construct(
        public string $template
    )
    {
    }

    public static function create(string $template): PromptTemplate
    {
        return new self($template);
    }

    public function format(array $inputVariables): PromptTemplate
    {
        $this->template = Str::swap($inputVariables, $this->template);

        return $this;
    }

    public function outputParser(string $outputParser): PromptTemplate
    {
        $this->template = Str::squish($this->template . $outputParser);

        return $this;
    }

    public function parse($response): object
    {
        $formatted = str($response)
            ->after('```json')
            ->before('```')
            ->trim();

        return (object)json_decode($formatted, true);
    }

    public function toString(): string
    {
        $this->template = Str::squish($this->template);

        return $this->template;
    }
}

Here is a breakdown of the class and what it does:

__construct()

The constructor method takes a string parameter $template and assigns it to a public property $template.

create()

The create() method is a static factory method that creates a new instance of the PromptTemplate class and returns it. It takes a string parameter $template and passes it to the constructor of the PromptTemplate class.

format()

The format() method takes an array parameter $inputVariables and replaces all occurrences of the keys in the $inputVariables array with their corresponding values in the $template property of the current instance of the PromptTemplate class. It uses the swap() method of the Illuminate\Support\Str class to perform the replacement. It returns the current instance of the PromptTemplate class.

outputParser()

The outputParser() method takes a string parameter $outputParser and appends it to the $template property of the current instance of the PromptTemplate class. It uses the squish() method of the Illuminate\Support\Str class to remove any unnecessary white space between the $template property and the $outputParser parameter. It returns the current instance of the PromptTemplate class.

parse()

The parse() method takes a parameter $response and extracts a JSON object from it. It uses the after(), before(), and trim() methods of the Illuminate\Support\Str class to extract the JSON object from the $response parameter. It then uses the json_decode() function to decode the JSON object into a PHP object and returns it.

toString()

The toString() method returns the $template property of the current instance of the PromptTemplate class after removing any unnecessary white space using the squish() method of the Illuminate\Support\Str class.

Next, you'll need to create the SystemMessagePromptTemplate and UserMessagePromptTemplate classes to interact with the Chat model in the OpenAI client. Place both classes in the newly created App\Prompts\Chat folder.

Here are those two classes:

<?php

namespace App\Prompts\Chat;

class SystemMessagePromptTemplate
{
    public static function fromString(string $message): array
    {
        return [
            'role' => 'system',
            'content' => $message,
        ];
    }
}

<?php

namespace App\Prompts\Chat;

class UserMessagePromptTemplate
{
    public static function fromString(string $message): array
    {
        return [
            'role' => 'user',
            'content' => $message,
        ];
    }
}

3. Creating Output Parsers

As we have developed our PromptTemplate class, we can now proceed to create a new Prompt. This will enable the OpenAI ChatGPT model to provide a conversational-style response. However, if you are building non-conversational applications, you may require a structured response that lacks any filler text.

To achieve this, we introduce the JsonListParser class, which we place under App\OutputParser. This class serves as an instructor for the ChatGPT model, guiding it on how to structure its response. By using this class, you can create a structured response that suits your application's needs.

<?php

namespace App\OutputParser;

use Stringable;

class JsonListParser implements Stringable
{
    public function __toString()
    {
        return <<<TEXT
RESPONSE FORMAT INSTRUCTIONS
----------------------------
When responding to me please, please output the response in the following format:
\`\`\`json
{{{{
    "data": array \\ An array of strings.
}}}}
\`\`\`
However, above all else, all responses must adhere to the format of RESPONSE FORMAT INSTRUCTIONS.
Remember to respond with a json blob with a single key, and NOTHING else.
TEXT;

    }
}

4. Parsing the ChatGPT Response

To ensure the proper functioning of our classes, we will use the console.php file to interact with them. Let's create a new prompt that generates ten keywords based on a given topic.

<?php

use App\Prompts\Chat\SystemMessagePromptTemplate;
use App\Prompts\Chat\UserMessagePromptTemplate;
use App\Prompts\PromptTemplate;
use Illuminate\Support\Facades\Artisan;

/*
|--------------------------------------------------------------------------
| Console Routes
|--------------------------------------------------------------------------
|
| This file is where you may define all of your Closure based console
| commands. Each Closure is bound to a command instance allowing a
| simple approach to interacting with each command's IO methods.
|
*/

Artisan::command('keywords', function () {

    $prompt = PromptTemplate::create(template: 'Generate 10 keywords for {topic}')
        ->format([
            '{topic}' => 'Laravel',
        ])
        ->outputParser(new App\OutputParser\JsonListParser());


    $client = OpenAI::client(config('services.open_ai'));

    $response = $client->chat()->create([
        'model' => 'gpt-3.5-turbo',
        'messages' => [
            SystemMessagePromptTemplate::fromString("
        You are an SEO Expert. You are helping a client to generate keywords for their website.
        Please follow the RESPONSE FORMAT INSTRUCTIONS when responding to the User.
        "),
            UserMessagePromptTemplate::fromString($prompt->toString()),
        ],
    ]);

    $this->comment($response->choices[0]->message->content);
});

To execute this prompt, enter php artisan keywords in the console. If everything is working as expected, you should receive the following response:

{
  "data": [
    "Laravel",
    "PHP framework",
    "Laravel development",
    "Laravel web development",
    "Laravel applications",
    "Laravel projects",
    "Laravel web applications",
    "Laravel PHP",
    "Laravel programming",
    "Laravel framework"
  ]
}

Great! Our ChatGPT API is returning a structured response as we intended. But how do we convert this response into a PHP object?

Fortunately, our PromptTemplate class includes a parse function that handles this conversion. Below is the complete code, which includes the parsing function:

<?php

use App\Prompts\Chat\SystemMessagePromptTemplate;
use App\Prompts\Chat\UserMessagePromptTemplate;
use App\Prompts\PromptTemplate;
use Illuminate\Support\Facades\Artisan;

/*
|--------------------------------------------------------------------------
| Console Routes
|--------------------------------------------------------------------------
|
| This file is where you may define all of your Closure based console
| commands. Each Closure is bound to a command instance allowing a
| simple approach to interacting with each command's IO methods.
|
*/

Artisan::command('keywords', function () {

    $prompt = PromptTemplate::create(template: 'Generate 10 keywords for {topic}')
        ->format([
            '{topic}' => 'Laravel',
        ])
        ->outputParser(new App\OutputParser\JsonListParser());


    $client = OpenAI::client(config('services.open_ai'));

    $response = $client->chat()->create([
        'model' => 'gpt-3.5-turbo',
        'messages' => [
            SystemMessagePromptTemplate::fromString("
        You are an SEO Expert. You are helping a client to generate keywords for their website.
        Please follow the RESPONSE FORMAT INSTRUCTIONS when responding to the User.
        "),
            UserMessagePromptTemplate::fromString($prompt->toString()),
        ],
    ]);

    $output = $prompt->parse($response->choices[0]->message->content);

    collect($output->data)->each(function ($keyword) {
        $this->comment($keyword);
    });

});

5. Testing with Pest

After verifying that our PrompTemplate class is functional and our command is producing the desired output, the next step is to create test cases to ensure the code's reliability. In this case, we will be using Pest PHP to perform our testing. The test case is located in tests/Unit/Prompts/PromptTemplateTest.php.

<?php

use App\Prompts\PromptTemplate;

it('can create a new prompt template', function () {
    $template = 'This is a {variable} template.';

    $promptTemplate = PromptTemplate::create($template);

    expect($promptTemplate)->toBeInstanceOf(PromptTemplate::class);
});

it('can format a template with input variables', function () {
    $template = 'This is a {variable} template.';

    $prompt = PromptTemplate::create($template)
        ->format(['{variable}' => 'test']);

    expect($prompt->toString())
        ->toBe('This is a test template.');
});

it('can append an output parser to a template', function () {
    $outputParser = '---RESPONSE FORMAT INSTRUCTIONS---';

    $prompt = PromptTemplate::create('This is a test template.')
                ->outputParser($outputParser);

    expect($prompt->toString())
        ->toBe('This is a test template. ---RESPONSE FORMAT INSTRUCTIONS---');
});

it('can parse a response', function () {
    $response = '```json { "data": "value" } ```';

    $prompt = PromptTemplate::create('Test prompt')
                ->parse($response);

    expect($prompt)
        ->toBeObject()
        ->and($prompt)
        ->toHaveProperty('data', 'value');
});

it('can convert a template to a string', function () {
    $prompt = PromptTemplate::create('This is a {variable} template. ')
                        ->format(['{variable}' => 'test'])
                        ->toString();

    expect($prompt)->toBe('This is a test template.');
});

Conclusion

In conclusion, this tutorial provides a friendly and easy-to-follow guide on incorporating OpenAI ChatGPT in your Laravel application. By implementing Prompt Templates, Output Parsers, and parsing the response, you can enjoy structured API responses that cater to your non-conversational application needs. The step-by-step instructions enable you to interact with the OpenAI client effortlessly while keeping your code clean and easy to read. Moreover, don't forget to test your implementation with Pest PHP to ensure smooth sailing and dependable performance. Happy coding!


Bring Your Ideas to Life 🚀

If you need help with a Laravel project let's get in touch.

Lucky Media is proud to be recognized as a Top Laravel Development Agency

lokman musliu
Lokman Musliu

Founder and CEO of Lucky Media

Technologies:

Laravel
OpenAI
Heading Pattern

Related Posts

Stay up to date

Be updated with all news, products and tips we share!